Simultaneously Learning Neighborship and Projection Matrix for Supervised Dimensionality Reduction
نویسندگان
چکیده
Explicitly or implicitly, most of dimensionality reduction methods need to determine which samples are neighbors and the similarity between the neighbors in the original highdimensional space. The projection matrix is then learned on the assumption that the neighborhood information (e.g., the similarity) is known and fixed prior to learning. However, it is difficult to precisely measure the intrinsic similarity of samples in high-dimensional space because of the curse of dimensionality. Consequently, the neighbors selected according to such similarity might and the projection matrix obtained according to such similarity and neighbors are not optimal in the sense of classification and generalization. To overcome the drawbacks, in this paper we propose to let the similarity and neighbors be variables and model them in low-dimensional space. Both the optimal similarity and projection matrix are obtained by minimizing a unified objective function. Nonnegative and sum-to-one constraints on the similarity are adopted. Instead of empirically setting the regularization parameter, we treat it as a variable to be optimized. It is interesting that the optimal regularization parameter is adaptive to the neighbors in low-dimensional space and has intuitive meaning. Experimental results on the YALE B, COIL100, and MNIST datasets demonstrate the effectiveness of the proposed method.
منابع مشابه
مدل ترکیبی تحلیل مؤلفه اصلی احتمالاتی بانظارت در چارچوب کاهش بعد بدون اتلاف برای شناسایی چهره
In this paper, we first proposed the supervised version of probabilistic principal component analysis mixture model. Then, we consider a learning predictive model with projection penalties, as an approach for dimensionality reduction without loss of information for face recognition. In the proposed method, first a local linear underlying manifold of data samples is obtained using the supervised...
متن کاملSemi-supervised Sparsity Pairwise Constraint Preserving Projections based on GA
The deficiency of the ability for preserving global geometric structure information of data is the main problem of existing semi-supervised dimensionality reduction with pairwise constraints. A dimensionality reduction algorithm called Semi-supervised Sparsity Pairwise Constraint Preserving Projections based on Genetic Algorithm (SSPCPPGA) is proposed. On the one hand, the algorithm fuses unsup...
متن کاملSemi-supervised Orthogonal Graph Embedding with Recursive Projections
Many graph based semi-supervised dimensionality reduction algorithms utilize the projection matrix to linearly map the data matrix from the original feature space to a lower dimensional representation. But the dimensionality after reduction is inevitably restricted to the number of classes, and the learned non-orthogonal projection matrix usually fails to preserve distances well and balance the...
متن کاملLearning Through Non-linearly Supervised Dimensionality Reduction
Dimensionality reduction is a crucial ingredient of machine learning and data mining, boosting classification accuracy through the isolation of patterns via omission of noise. Nevertheless, recent studies have shown that dimensionality reduction can benefit from label information, via a joint estimation of predictors and target variables from a low-rank representation. In the light of such insp...
متن کاملLinear Manifold Regularization with Adaptive Graph for Semi-supervised Dimensionality Reduction
Many previous graph-based methods perform dimensionality reduction on a pre-defined graph. However, due to the noise and redundant information in the original data, the pre-defined graph has no clear structure and may not be appropriate for the subsequent task. To overcome the drawbacks, in this paper, we propose a novel approach called linear manifold regularization with adaptive graph (LMRAG)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1709.02896 شماره
صفحات -
تاریخ انتشار 2017